Retention Science Android SDK
Updated: Jan 7, 2015

Current Version: 1.0

Minimum API level: 5

Latest Revision Notes:

Updating document to reflect the minimum API level for Android app developers. The
current minimum required API level for the Retention Science SDK is 5 (Android 2.0, Eclair).
This should be adequate for most app developers.

If it is required to support a lower API level, modifications to the SDK can be made.

For more information on Android OS distribution see the following:

https://developer.android.com/about/dashboards/index.html

Document Index:

Part 1: Implementing the Retention Science JAR file

The provided information for JAR implementation is focused on the Eclipse based ADT.
Part 2: How the Retention Science SDK works

A brief overview of how the Retention Science APK runs, under the hood.
Part 3: Using the Retention Science SDK

A explanation of the used developer accessible methods.

https://developer.android.com/about/dashboards/index.html

Part 1 - ::::: Implementing the Retention Science JAR file :::::

1.) locate the rskit-1.x.jar file provided as part of your Retention Science SDK

If you are provided the Java files directly, then import them as you would any other
collection of classes, and skip to #5.

2.) Place the file in your library folder

Commonly there is a folder called “libs” in your project, but depending on your
configurations it may be in another location, or you may want to place it somewhere else.

3.) Add the JAR file to the Java build path “libraries” list

Properties for com.example.ex_01

type filter text Java Build Path = R 4

P Resource
Android | #Source | == Projects m ‘. Order and Export |
Android Lint Preferences .
Builders b ;
Java Build Path
P Java Code Style
P Java Compiler
P Java Editor > Eh
Javadoc Location

"o the build path:

example.ex_01/libs

Dependencies
P =, Android Private Libraries

Project References [Add Variable... |
Run/Debug Settings

»Task Repository | Add Library... |
Task Tags
XML Syntax [Add Class Folder... |

| Add External Class Folder... |

| Edit... |

| Remave |

Migrate JAR File...

@:‘ | Cancel | | 0K

You can access the above menu by selecting your project, and right clicking / control - clicking.
Towards the bottom of the menu will be the properties option. Selecting it will open up the above
image.

4.) Add the JAR file to the list of exported files.

Properties for com.example.ex_01

type filter text Java Build Path =
P Resource
Android | @BSource | [=Projects | @i Libraries [RESSTLIETETLNSTL S
Android Lint Preferences
Builders Build class path order and exported entries:
Java Build Path (Exported entries are contributed to dependent projects)
I Java Code Style = *com.example.ex_01/src Up
P Java Compiler = Bcom.example.ex_01/gen
P Java Editor) [= Android 4.4W Down
Jpa‘.fédotcRLOFl:atlon (=4 Android Privgte Libraries
roject References =
Run/Debug Settings 51. !Q'Aﬂdm'd Depe & - Top
B Task Repository [(oo rskit-1.0.jar - .example.ex_01/libs
Task Tags
XML Syntax dattom
| Select All
| Deselect All
@ | cancel | | 0K

5.) Add the required permissions to your AndroidManifest.xml file

<?xml version="1.8" encoding="utf-8"7>
= «manifest xmlns:android="http: schemas.android
package="com. example.ex_@1"
android:versionCode="1"
android:versionName="1.8" =

<uses-sdk

android:minSdkVersion="5"

r:mdr'md tur‘qetSdk\l‘ersmn— "19" />

<cuses-permission android:name="android
n android:name="gndroid.p
on android:name="android.p

= <application

The Following permissions need to be added to the file, as the above screenshot.

.comsapksSressandroid”

permission. ACCESS_NETWORK_STATE" />

permission.READ_PHONE_STATE"

.permission. INTERNET "»</uses-permissions

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<uses-permission android:name="android.permission.INTERNET"></uses-permission>

Now, the RSClient class should be accessible within your project. To completely implement the
RSClient, we need to make sure the init methods are called prior to any event calls. You may
have other preferred implementations for library initializers being called prior to complete app
initialization, but the following is the suggested implementation.

6.) Implement an extended Application class with the needed RSClient init

m MainApplication §3 o com.example.ex_ a1 com.example.ex_ a0 com.example.ex_ 7 com.example.ex_ 7 cot

package com.exomple.ex_@1;
@ import com.retentionscience.client.RSClient;
public class MoinApplication extends Application{

- public void onCreate(){
RSClient.initializeWithSiteld("152", this);
RSClient.DEBUG_enableleveloperMode();
REClient. enableDebuglogs();
R&Client.enableVerboselogs();
R&Client. setUserld{"newuserl235");
R&Client. setDeviceldSource("B67ebl62-3b6f-dae2-al71-2478b63dFFRA");
super.onCreate();

The core initialization only requires the following:
RSClient.initializeWithSiteld(“XXXX”, this);

The other calls in the above images are not required, and depend on your implementation. (also
note that there are debug and developer functions called, also not needed).
“XXXX” is the Id provided to you by Retention Science.

7.) Point the AndroidManifest to the Application class you created

<?xml version="1.8" encoding="utf-8"7>
<manifest xmlns:android="http:/ /schemas.android. com/apk/res/android”
package="com. example.ex_@1"

android:versionCode="1
android:versionName="1.8" =

<uses-sdk
android:minSdkVersion="5"
& android: targetSdkVersion="19" /=
<uses-permission android:name="android.permission. ACCESS_NETWORK_STATE" /=
<uses-permission android:naome="android.permission. READ_PHONE_STATE" />
<uses-permission android:name="android.permission. INTERNET "s</uses-permission>
<application
android:name="com.example. ex_01.Maindpplication®
android:allowBackup="trus"”
android:icon="8drawable/ic_launcher"”
android: label="8string app_name"
android: theme="Bstyle/AppTheme" =
cactivitv

Now your application will always call the RSClient initialize function when the app is Initialized.

Part 2 - :::::How the Retention Science SDK works:::::

The RS SDK has a main queue that events are added too (via the “frack” methods). A
single low priority & spaced out thread will pull items off the queue as a small threadpool has
available threads for processing and the HTTP POST request. Some events are also cached to
disk (based off of HTTP failure & an extended queue length) and are re-sent on the next app
restart.

Some of the following methods allow custom configurations of the SDK, but generally speaking

the only methods used will be “initialize WithSiteld”, “track”, “setUserld” and
“setDeviceldSource”.

Part 3 - :::::Using the Retention Science SDK:::::

High Level:
The core or the RSClient is made up of two methods, “initializeWithSiteld” & “track”.
“initialize WithSiteld” is called once and must be called before any track calls are made.
Once its called, the app can start making “frack” calls with various parameters. If that is
all you need as an App developer there are no other methods required.

Method Breakdowns:

RSClient.initialize WithSiteld(siteld, application)

The sitelD is provided by Retention Science, and the Application instance ideally is
passed from the custom Application class (as mentioned previously in the
implementation manual.

RSClient.track(action) - (and other various parameters)

The track method has 3 parts (2 optional), the event action string is always required and
is the first parameter. The other optional parameters are a combination of a metadata
packet (either in JSONODbject or Bundle form) & a Location object. The calls are not
instantaneous, and the details of the logic implementation will be covered after the
method details.

RSClient.setUserld(userld)

Used to define a userld depending on the app implementation. This userld is defined by
the app developer and is provided as an optional parameter to add to all events.

RSClient.setDeviceldSource(source)

This is used primarily to track marketing. This will mark all events to include a source
parameter for App developer tracking.

RSClient.useGeneratedUUIDs(useGenerated)

Getting UUIDs on Android can be a bit tricky. By default the SDK generates UUIDs from
the android DevicelD, but this may not be available or desired in many cases. Choosing
generated UUIDs will create a UUID for the device and save it to disk. This will be
entirely random, but also will not be the same if a user uninstalls / re-installs the app.

RSClient.getUniqueDeviceld()

Provides access to the UUID used by the Retention Science SDK

RSClient.enableDuplicateEventChecking()

This will check (based on a hash on the event data) if the event being added to the SDK
event queue is already in the queue, and prevent additions if it is already there. Please
note this will have a small performance impact.

RSClient.setMaxQueueSize(maxSize)

This limits the amount of events in the event queue. By default it is unlimited. If you are
firing off a very large amount of events, this may be worth considering, but the queue
should have little impact on performance even if it is large.

RSClient.setMaxCachedEvents(maxEvents)

This is used if you wish to adjust the amount of events cached on disk, which will be
restored and resent in the event of extended internet disconnection. If your app is
heavily web dependent, touching this won’t do much, more applicable for “light” web
dependent apps.

RSClient.setCachedIinQueue Treshold(queue Treshold)

If a collection of events are filling the queue (haven’t been sent to the Retention Science
servers yet) it is possible that those events will be lost of the user looses internet
connections, exits the app, and it gets evicted. This adjusts how many events can be in
the queue before new events are also cached to disk.

RSClient.setSessionDuration(maxDelay)

This adjust the event delay (time between events) for those events to be considered part

of the same session. If the events are spaced out beyond this, they will generate new
session keys on firing.

RSClient.setlLooplntervalSpacing(ms)

This simply reduces the thread time spent logging events. This should only be adjusted if
you are sending a large volume of events in occasional intervals & these intervals

demand very high CPU. It is highly unlikely this will need to be adjusted, but it it is
provided for convenience.

RSClient.setSocketTimeout(socketTimeout)

Used to adjust how many milliseconds an HTTP event will stay open before it is

considered a failure and returns an error. Any calls affected by this will be added back
into the queue and retried.

RSClient.retryEventsCachedOnDisk()

This is automatically called as part of the “initialize WithSiteld” call, and it is advised not
to trigger it manually unless you have specific needs related to calling cached events.

RSClient.islnitialized()

A simple boolean to check if the Retention Science SDK has been initialized. All “track”
calls do this check internally, so there is no need to call this externally.

RSClient.enableDebuglogs()

By default no info is passed to LogCat. Enable this for initial setup / development.

RSClient.enableVerboselogs()

Verbose logs will write the entire JSON string to logcat when a call comes back
successfully. Note that debug logs must also be enabled.

